Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Andrews, David L; Bain, Angus J; Ambrosio, Antonio (Ed.)
-
We experimentally demonstrate and numerically analyze large arrays of whispering gallery resonators. Using fluorescent mapping, we measure the spatial distribution of the cavity ensemble’s resonances, revealing that light reaches distant resonators in various ways, including while passing through dark gaps, resonator groups, or resonator lines. Energy spatially decays exponentially in the cavities. Our practically infinite periodic array of resonators, with a quality factor (Q) exceeding 107, might impact a new type of photonic ensembles for nonlinear optics and lasers using our cavity continuum that is distributed, while having high-Qresonators as unit cells.more » « less
-
In this paper, we present the results of numerical simulations of the optical spectra of a three-sphere photonic molecule. The configuration of the system was continuously modified from linear to triangular, in-plane with the fundamental mode excited in one of the spheres and perpendicular to it. We found the relative insensitivity of the spectra to the in-plane deviation from the linear arrangement up to about 110°. For larger angles, the spectra show significant modification consisting of the major spectral peaks splitting and shifting. On the contrary, the spectra are quite sensitive to out-of-plane molecule deviation, even at small angles. Thus, the spectra of photonic molecules can be modified by changing the mutual positions of the constituent resonators, which can be useful in reconfigurable photonic devices.more » « less
-
In this work, we study theoretically and experimentally optical modes of photonic molecules—clusters of optically coupled spherical resonators. Unlike previous studies, we do not use stems to hold spheres in their positions relying, instead, on optical tweezers to maintain desired structures. The modes of the coupled resonators are excited using a tapered fiber and are observed as resonances with a quality factor as high as 10 7 . Using the fluorescent mapping technique, we observe families of coupled modes with similar spatial and spectral shapes repeating every free spectral range (a spectral separation between adjacent resonances of individual spheres). Experimental results are compared with the results of numerical simulations based on a multi-sphere Mie theory. This work opens the door for developing large arrays of coupled high-Q spherical resonators.more » « less
-
We report on reversible and continuously deformable soft micro-resonators and the control of their resonance split and directional emission. Assisted by computerized holographic-tweezers, functioning as an optical deformer of our device, we gradually deform the shape and change the functionality of a droplet whispering-gallery cavity. For example, we continuously deform hexagonal cavities to rectangular ones and demonstrate switching to directionally emitting mode-of-operation, or splitting a resonant mode to a 10-GHz separated doublet. A continuous trend of improving spatial light modulators and tweezers suggests that our method is scalable and can control the shape and functionality of many individual devices. We also demonstrate optional solidification, proving the feasibility of transformer-enabled applications, including in printing optical circuits and multiwavelength optical networks.more » « less
An official website of the United States government
